
Realizability Toposes

Stijn Vermeeren

Darwin College

Bekaflaan 1 bus 2

3200 Aarschot
Belgium

April 30, 2009

I declare that this essay is work done as part of the Part III Examination.
I have read and understood the Statement on Plagiarism for Part III and

Graduate Courses issued by the Faculty of Mathematics, and have abided by
it. This essay is the result of my own work, and except where explicitly stated
otherwise, only includes material undertaken since the publication of the list
of essay titles, and includes nothing which was performed in collaboration.
No part of this essay has been submitted, or is concurrently being submitted,
for any degree, diploma or similar qualification at any university or similar
institution.

Signed: ......................................



In the 1940s, Stephen Cole Kleene [4] discovered the realizability interpre-
tation of intuitionistic number theory. In 1982, Martin Hyland [1] presented
the effective topos, in which Kleene’s realizability reappears. The aim of this
essay is to explain these concepts, and to prove their connection.

In the first section I present Kleene’s realizability. Sections 2 and 3 give a
detailed presentation of the effective topos. In section 4, I show how Kleene’s
realizability reappears inside the effective topos. Finally, I briefly discuss
some more advanced properties of the effective topos, and some ways to
generalize its construction.

This essay was written as part of the Certificate of Advanced Study in
Mathematics, commonly known as “Part III ”, at the University of Cam-
bridge. The essay topic was proposed and supervised by Peter T. Johnstone.

My most important guides in writing this paper were the original articles
of Kleene [4] and Hyland [1]. Other helpful resources were [10], [3], [2], [6]
and the lecture notes from the Part III courses on Category Theory, lectured
by Richard Garner, and on Topos Theory, lectured by Peter T. Johnstone.

Notation. We fix a Gödel numbering of the recursive functions. If e, n ∈ N,
we simply write e(n) when we mean the result of applying the recursive
function with number e to the input n. We also fix a recursive pairing
function, and we write 〈n,m〉 for the encoding of the pair (n,m).

1 Kleene’s realizability

Stephen Coole Kleene was in 1945 [4] the first to introduce the notion of
realizability. As he relates in [5], Kleene was struck by the fact that both
intuitionism and the theory of recursive functions deal with effective or con-
structive processes. Realizability is the result of Kleene’s attempt to find a
precise connection between intuitionistic number theory and recursive func-
tions.

For an intuitionist, the statement ∃xϕ(x) only holds if we explicitly know
a particular x for which ϕ(x) holds. Such a value x can be said to realize the
statement ∃xϕ(x). Kleene generalized this notion to arbitrary sentences in
first order logic.

Definition 1.1. Consider some first order predicate language, with function
and relation symbols corresponding to total recursive functions and total
recursive relations on N. We write n for the constant symbol corresponding
to the constant function with value n.

A natural number e realizes a sentence ϕ if

1



(a) ϕ is an atomic formula, which is true when evaluating the corresponding
recursive functions, and e = 0,

(b) ϕ = ψ ∧ χ and e = 〈m,n〉 where m realizes ψ and n realizes χ,

(c) ϕ = ψ ∨ χ and either e = 〈0, m〉 where m realizes ψ, or e = 〈1, n〉 and
n realizes χ,

(d) ϕ = ψ → χ and whenever n realizes ϕ, then e(n) is defined and realizes
χ,

(e) ϕ = ¬ψ and e realizes ψ → (0 = 1),

(f) ϕ = ∃x(ψ(x)) and e = 〈m,n〉 where m realizes ψ(n), or

(g) ϕ = ∀x(ψ(x)) and e(n) realizes ψ(n) for all n ∈ N.

The main importance of realizability is providing an interpretation of
intuitionistic number theory (also called Heyting arithmetic). Indeed, David
Nelson [7] proved that if a sentence is provable in intuitionistic number theory,
then it is realizable.

We give some examples of realizability:

• We look for an e ∈ N realizing

∀x(∃y(2 · y = x) ∨ ¬∃y(2 · y = x)).

By (g), e(n) must realize

∃y(2 · y = n) ∨ ¬∃y(2 · y = n) (1)

for all n ∈ N.

If n is even, then by (a),

2 ·
(n

2

)

= n

is realized by 0. So by (f),

∃y(2 · y = n)

is realized by
〈

0, n
2

〉

. Hence by (c),
〈

0,
〈

0, n
2

〉〉

realizes (1).

If n is odd, then there is no m ∈ N for which

2 ·m = n

is realized. So
∃y(2 · y = n)

2



is not realized. Hence, by (d)

∃y(2 · y = n) → (0 = 1)

is realized by any natural number, and using (e), so is

¬∃y(2 · y = n).

Hence 〈1, m〉 realizes (1) for any m ∈ N.

Consequently, emust be a recursive function that maps even numbers n
to

〈

0,
〈

0, n
2

〉〉

, and maps odd numbers n to 〈1, f(n)〉 for some arbitrary
natural number f(n).

• Let ϕ be any sentence. Then either ϕ is realized by some number, or
any number realizes ¬ϕ. Hence

ϕ ∨ ¬ϕ

is always realized.

• However, if ϕ(x) is a formula with a free variable x, then

∀x(ϕ(x) ∨ ¬ϕ(x))

is only realized if there is an algorithm that tells, for each n ∈ N, which
of ϕ(n) and ¬ϕ(n) is realized.

• In particular (see [4] section 9), let T (x, t) be the primitive recursive
predicate “the Turing machine with number x halts on input x after

less than t steps”. Then any number realizing

ϕ = ∀x(∃tT (x, t) ∨ ¬∃tT (x, t))

would correspond to a recursive solution of the haling problem, which
is impossible. So we have a formula that is valid classically, but is
not realized. Consequently the negation ¬ϕ is realized, but invalid
classically.

2 P(N)-valued predicates

Kleene’s realizability associates with each sentence ϕ a set of natural numbers
that realize ϕ . We can think of this subset of N as a nonstandard truth value

of ϕ .

3



Generalizing this, we define a P(N)-valued predicate on a set X as
a function X → P(N). Such a P(N)-valued predicate associates with each
parameter in X a nonstandard truth value, that is a subset of N .

For any set X, we have P(N)-valued predicates ⊤,⊥ ∈ P(N)X given by

⊤(x) = N

⊥(x) = ∅

for all x ∈ X.
Given ϕ, ψ ∈ P(N)X , we can define new P(N)-valued predicates

(ϕ ∧ ψ), (ϕ ∨ ψ), (ϕ→ ψ) ∈ P(N)X

by applying Kleene’s definitions pointwise:

(ϕ ∧ ψ)(x) = { 〈n,m〉 | n ∈ ϕ(x) and m ∈ ψ(x) }

(ϕ ∨ ψ)(x) = { 〈0, n〉 | n ∈ ϕ(x) } ∪ { 〈1, m〉 | m ∈ ψ(x) }

(ϕ→ ψ)(x) = { e ∈ N | whenever n ∈ ϕ(x), then e(n) ∈ ψ(x) }

for all x ∈ X.
Next we can define a binary entailment relation ⊢X on P(N)X by

ϕ ⊢X ψ iff
⋂

x∈X

(ϕ→ ψ)(x) is nonempty.

Any element of ∩x∈X(ϕ → ψ)(x) is a recursive function that sends each
element of ϕ(x) to an element of ψ(x), regardless of the parameter x ∈ X.
We say that such a function uniformly realizes ϕ ⊢X ψ.

Proposition 2.1. For each set X,
(

P(N)X ,⊢X

)

is a Heyting prealgebra.

Proof. ⊢X is a preorder on P(N)X . Indeed the identity function uniformly

realizes ϕ ⊢X ϕ for each ϕ ∈ P(N)X . And if f and g uniformly realize
respectively ϕ ⊢X ψ and ψ ⊢X χ, then their composite g ◦ f uniformly
realizes ϕ ⊢X χ.

⊤ is a maximum for ⊢X , because any total recursive function uniformly
realizes ϕ ⊢X ⊤ for any ϕ ∈ P(N)X . Similarly ⊥ is a minimum for ⊢X , as
any recursive function uniformly realizes ⊥ ⊢X ϕ for any ϕ ∈ P(N)X .

We claim that ϕ∧ψ is the meet of any ϕ, ψ ∈ P(N)X . Indeed (ϕ∧ψ) ⊢X ϕ

is uniformly realized by projecting onto the first component, and (ϕ∧ψ) ⊢X ψ

by projecting onto the second component. Moreover, if χ ∈ P(N)X and f, g
uniformly realize respectively χ ⊢X ϕ and χ ⊢X ψ, then

〈f, g〉 : n 7→ 〈f(n), g(n)〉

4



uniformly realizes χ ⊢X (ϕ ∧ ψ), as required.
Similarly, we prove that ϕ ∨ ψ is the join of any ϕ, ψ ∈ P(N)X . Indeed

ϕ ⊢X (ϕ ∨ ψ) is uniformly realized by the recursive function n 7→ 〈0, n〉, and
ψ ⊢X (ϕ ∨ ψ) by n 7→ 〈1, n〉. Moreover, if χ ∈ P(N)X and f, g uniformly
realize respectively ϕ ⊢X χ and ψ ⊢X χ, then the recursive function

h : 〈i, n〉 7→

{

f(n) if i = 0
g(n) if i = 1

uniformly realizes (ϕ ∨ ψ) ⊢X χ.
Finally we show that ϕ→ ψ is the Heyting implication of ϕ, ψ ∈ P(N)X .

Suppose that (χ ∧ ϕ) ⊢X ψ is uniformly realized by f . Define a recursive
function

g : n 7→ Gödel number of the recursive function f(〈n, ·〉).

Then, whenever x ∈ X and n ∈ χ(n), g(n) maps each element of ϕ(x) to
an element of ψ(x), that is g(n) ∈ (ϕ → ψ)(x). Hence g uniformly realizes
χ ⊢X (ϕ→ ψ).

Conversely, if χ ⊢X (ϕ → ψ) is uniformly realized by g, then define a
recursive function

f : 〈n,m〉 7→ (g(n)) (m).

Then, whenever x ∈ X, n ∈ χ(x) and m ∈ ϕ(x), we have f(〈n,m〉) ∈ ψ(x).
So f uniformly realizes (χ ∧ ϕ) ⊢X ψ.

Thus we have proved (χ ∧ ϕ) ⊢X ψ if and only if χ ⊢X (ϕ → ψ), as
required.

Let f : X → Y be any function. Then we can define a map

f ∗ : P(N)Y → P(N)X

by
(f ∗ϕ)(x) = ϕ(f(x))

for all ϕ ∈ P(N)Y and x ∈ X.
This map f ∗ is order-preserving, that is a functor

(P(N)Y ,⊢Y ) → (P(N)X ,⊢X).

Indeed, suppose ϕ, ψ ∈ P(N)Y , g uniformly realizes ϕ ⊢Y ψ and x ∈ X.
Then g maps each element of ϕ(f(x)) = (f ∗ϕ)(x) to an element of ψ(f(x)) =
(f ∗ψ)(x), so g also uniformly realizes f ∗ϕ ⊢X f ∗ψ.

If f is surjective, then the converse (f ∗ is a full functor) also holds.

5



Now we define two maps ∀f, ∃f : P(N)X → P(N)Y by

(∃f(ϕ))(y) =
⋃

x∈f−1({y})

ϕ(x)

(∀f(ϕ))(y) = { e ∈ N | e(0) ∈ Ay }

where

Ay =







⋂

x∈f−1({y})

ϕ(x) if y ∈ im f

N ∪ {undefined} otherwise

for all y ∈ Y .

Proposition 2.2. ∃f and ∀f are functors, respectively left and right adjoint

to f ∗.

Proof. Suppose
ϕ ⊢X ψ

is uniformly realized by g. Let y ∈ Y .
Any n ∈ (∃f(ϕ))(y) is an element of ϕ(x) for some x ∈ f−1({y}). So

g(n) ∈ ψ(x) for the same x ∈ f−1({y}), that is g(n) ∈ (∃f(ψ))(y). Hence g
also uniformly realizes

∃f(ϕ) ⊢Y ∃f(ψ),

so ∃f is a functor.
Let g′ be the recursive function that maps each recursive function e

to g ◦ e. If e ∈ (∀f(ϕ))(y), then e(0) ∈ ϕ(x) for all x ∈ f−1({y}). So
(g′(e))(0) = g(e(0)) ∈ ψ(x) for all x ∈ f−1({y}), that is g′(e) ∈ (∀f(ψ))(y).
Hence g′ uniformly realizes

∀f(ϕ) ⊢Y ∀f(ψ),

so ∀f is a functor.
Now let ϕ ∈ P(N)X and ψ ∈ P(N)Y .
We first prove

∃f(ϕ) ⊢Y ψ iff ϕ ⊢X f ∗ψ.

Suppose ∃f(ϕ) ⊢Y ψ is uniformly realized by g. Then for any x ∈ X, if
n ∈ ϕ(x), also n ∈ (∃f(ϕ))(f(x)), so g(n) ∈ ψ(f(x)) = (f ∗ψ)(x). Hence g
also uniformly realizes ϕ ⊢X f ∗ψ.

Conversely, suppose g uniformly realizes ϕ ⊢X f ∗ψ. Then for each y ∈ Y ,
any n ∈ (∃f(ϕ))(y) is also element of ϕ(x) for some x ∈ f−1({y}). So
g(n) ∈ (f ∗ψ)(x) = ψ(y). Hence g uniformly realizes ∃f(ϕ) ⊢Y ψ.

6



Hence ∃f is left adjoint to f ∗.
Next we prove

f ∗ψ ⊢X ϕ iff ψ ⊢Y ∀f(ϕ).

Suppose f ∗ψ ⊢X ϕ is uniformly realized by g. Let g′ be the recursive
function that maps n to the constant function with value g(n) (which is the
everywhere undefined function if g(n) is undefined). Then for any y ∈ Y ,
if n ∈ ψ(y), then n ∈ ψ(f(x)) = (f ∗ψ)(x) for all x ∈ f−1({y}). So g(n) ∈
ϕ(x) for all x ∈ f−1({y}). Hence g′(n) is a recursive function with value
g(n) ∈ ϕ(x) for all x ∈ f−1({y}). So g′(n) ∈ (∀f(ϕ))(y) and g′ uniformly
realizes ψ ⊢Y ∀f(ϕ).

Conversely, suppose g uniformly realizes ψ ⊢Y ∀f(ϕ). Then let g′ be the
recursive function that maps n to (g(n))(0). For any x ∈ X, if

n ∈ (f ∗ψ)(x) = ψ(f(x)),

then g(n) ∈ (∀f(ϕ))(f(x)). So

g′(n) = (g(n))(0) ∈ ϕ(x′)

for all x′ ∈ f−1({f(x)}), and in particular g′(n) ∈ ϕ(x). So g′ uniformly
realizes f ∗ψ ⊢X ϕ.

Hence ∀f is right adjoint to f ∗.

Remark 2.3. It is tempting to define

(∀f(ϕ))(y) =
⋂

x∈f−1({y})

ϕ(x) (2)

and claim that “g uniformly realizes f ∗ψ ⊢X ϕ if and only if g uniformly

realizes ψ ⊢Y ∀f(ϕ)” for this definition of ∀f . However, this is incorrect. If
g uniformly realizes f ∗ψ ⊢X ϕ and y 6∈ im f , then it is possible that there
is some n ∈ ψ(y) with n 6∈ (f ∗ψ)(x) for all x ∈ X. Then g(n) might be
undefined, which is impossible if g is to uniformly realize ψ ⊢Y ∀f(ϕ). This
cannot be overcome by only allowing total recursive functions. For example
the recursive function

f : 〈n,m〉 7→ (g(n)) (m)

that was needed in the proof of proposition 2.1 is not total. Only when f is
surjective, (2) is a good definition of the right adjoint of f ∗.

7



From now on, we will abuse our notation to some extent, and we will omit
the subscript of the ⊢ symbol when it is clear what it should be. For example,
suppose we have P(N)-valued predicates ϕ ∈ P(N)X×X and ψ ∈ P(N)X .
Then

∃x′(ϕ(x, x′)) ⊢ ψ(x)

will mean that
∃π1(ϕ) ⊢X ψ

where π1 : X×X → X is the projection onto the first component. Moreover

ϕ(x, x′) ⊢ ψ(x)

will mean that
ϕ ⊢X×X π∗

1ψ.

3 The effective topos

We are now ready to define the effective topos Eff .

3.1 Objects of Eff

An object of Eff is a set X together with a P(N)-valued equality predi-

cate ≈ ∈ P(N)X×X . This equality predicate must satisfy two axioms:

[x1 ≈ x2] ⊢ [x2 ≈ x1] (symmetry)

[x1 ≈ x2] ∧ [x2 ≈ x3] ⊢ [x1 ≈ x3] (transitivity)

We do not require reflexivity. Indeed [x ≈ x] can even be the empty set
for some x ∈ X. We call [x ≈ x] the existence predicate for (X,≈) and
we abbreviate [x ≈ x] as E(x).

For the name existence predicate to make sense, we certainly expect both
sides of an equality to exist, that is

[x ≈ x′] ⊢ E(x) ∧E(x′). (3)

To prove this, we have to find a recursive function that, regardless of x, x′ ∈ X,
maps each element of [x ≈ x′] to an element of E(x)∧E(x′). Suppose s uni-
formly realizes symmetry, and t uniformly realizes transitivity. If n ∈ [x ≈ x′],
then s(n) ∈ [x′ ≈ x], so t(〈n, s(n)〉) ∈ [x ≈ x] and t(〈s(n), n〉) ∈ [x′ ≈ x′].
Hence

n 7→
〈

t
(

〈n, s(n)〉
)

, t
(

〈s(n), n〉
) 〉

8



is a recursive function that uniformly realizes (3).
From now on, we will formulate our proofs in a more informal style.

For example, we will proof (3) by saying: “If [x ≈ x′], then by symmetry

also [x′ ≈ x]. Applying transitivity twice, we get [x ≈ x] and [x′ ≈ x′], and

therefore E(x) ∧ E(x′).” The fact that we can use this kind of intuitionis-
tic reasoning with predicates to prove ⊢-relations, is called the Soundness
Lemma in [2].

3.2 Morphisms of Eff

The morphisms (X,≈) → (Y,≈) of Eff are equivalence classes of functional
relations (X,≈) → (Y,≈).

Here a functional relation (X,≈) → (Y,≈) is a P(N)-valued predicate
F ∈ P(N)X×Y such that the following axioms hold:

F (x, y) ∧ [x ≈ x′] ∧ [y ≈ y′] ⊢ F (x′, y′) (F is relational)

F (x, y) ⊢ E(x) ∧ E(y) (F is strict)

F (x, y) ∧ F (x, y′) ⊢ [y ≈ y′] (F is single-valued)

E(x) ⊢ ∃y(F (x, y)). (F is total)

Two functional relations F,G : (X,≈) → (Y,≈) are equivalent if

F (x, y) ⊣⊢ G(x, y),

that is, both F (x, y) ⊢ G(x, y) and G(x, y) ⊢ F (x, y). This is indeed an
equivalence relation on the functional relations, since ⊢ is a preorder on
P(N)X×Y by proposition 2.1. Actually, ⊢ itself is already symmetric on
functional relations:

Lemma 3.1. If F and G are functional relations (X,≈) → (Y,≈) and

F (x, y) ⊢ G(x, y), then also G(x, y) ⊢ F (x, y).

Proof. Suppose F (x, y) ⊢ G(x, y). If G(x, y), then strictness of G gives E(x).
By totality of F , F (x, y′) for some y′ ∈ Y . By hypothesis, we infer that
G(x, y′) for this y′ ∈ Y . Since G is single-valued, we have y ≈ y′. Finally,
since F is relational, F (x, y). So G(x, y) ⊢ F (x, y), as required.

If G ∈ P(N)X×Y is a function relation (X,≈) → (Y,≈), then [G] denotes
its equivalence class, so [G] is a morphism (X,≈) → (Y,≈).

If f : (X,≈) → (Y,≈) is a morphism, then Ff ∈ P(N)X×Y denotes an
arbitrary functional relation representing f .

9



We define the composite g ◦ f of two morphisms f : (X,≈) → (Y,≈)
and g : (Y,≈) → (Z,≈) to be represented by

G : X × Z → P(N)

(x, z) 7→ ∃y(Ff(x, y) ∧ Fg(y, z)).

We first verify that G is a functional relation:

• G is relational: Suppose G(x, z), [x ≈ x′] and [z ≈ z′]. Then Ff(x, y)
and Fg(y, z) for some y ∈ Y . As Ff is strict, [y ≈ y]. Then by
relationality of Ff and Fg we find Ff (x

′, y) and Fg(y, z
′). Hence G(x′, z′)

as required.

• G is strict: Immediate from the strictness of Ff and Fg.

• G is single-valued: SupposeG(x, z) andG(x, z′). Then Ff (x, y), Fg(y, z),
Ff (x, y

′) and Fg(y
′, z′) for some y, y′ ∈ Y . As Ff is single-valued, we

have [y ≈ y′]. As Fg is strict, we have [z ≈ z]. So by relationality of
Fg, we get Fg(y

′, z). Finally, as Fg is single-valued, [z ≈ z′].

• G is total: Suppose E(x). By totality of Ff we have Ff(x, y) for some
y ∈ Y , and E(y) by strictness. By totality of Fg, we get Fg(y, z) for
some z ∈ Z. So we have ∃y(Ff(x, y)∧Fg(y, z)) for some z ∈ Z, that is
∃z(G(x, z)) as required.

We also need to check that [G] is independent of the choice of representa-
tives Ff of f and Fg of g. So suppose F ′

f and F ′
g are different representatives.

They satisfy

Ff (x, y) ⊣⊢ F
′
f(x, y)

Fg(y, z) ⊣⊢ F
′
g(y, z).

It immediately follows that

∃y(Ff(x, y) ∧ Fg(y, z)) ⊣⊢ ∃y(F ′
f(x, y) ∧ F

′
g(y, z))

so the composite of f and g is indeed well-defined.

Proposition 3.2. Eff , with objects and morphisms as above, is a category.

Proof. We need to verify that composition is associative and we need to show
that identity morphisms exist.

Associativity means that if f : (V,≈) → (X,≈), g : (X,≈) → (Y,≈) and
h : (Y,≈) → (Z,≈), then

∃y (∃x (Ff(v, x) ∧ Fg(x, y)) ∧ Fh(y, z))

⊣⊢ ∃x (Ff (v, x) ∧ ∃y (Fg(x, y) ∧ Fh(y, z))) .

10



This is obviously uniformly realized by the recursive repairing function

〈〈n,m〉 , k〉 7→ 〈n, 〈m, k〉〉

and its inverse.
Next we claim that [≈] is the identity morphism id : (X,≈) → (X,≈).

The equality predicate ≈ is indeed a functional relation. It is relational,
strict and single-valued by trivial application of symmetry and transitivity.
(We have explicitly verified strictness as (3) above.) Totality is uniformly
realized by the identity function.

Now, if f : (Y,≈) → (X,≈) and g : (X,≈) → (Y,≈). Then

∃x′(Gf(y, x
′) ∧ [x′ ≈ x]) ⊣⊢ Gf (y, x)

∃x′([x ≈ x′] ∧Gg(x
′, y)) ⊣⊢ Gf (x, y)

hold by strictness and relationality of Gf and Gg. So [≈] ◦ f = f and
g ◦ [≈] = g. Hence [≈] : (X,≈) → (X,≈) is indeed the identity morphism of
(X,≈).

We can give an easy description of isomorphisms in Eff .

Proposition 3.3. f : (X,≈) → (Y,≈) is an isomorphism if and only if Ff

is also a functional relation (Y,≈) → (X,≈). That is, if and only if we have

Ff (x, y) ∧ Ff (x
′, y) ⊢ [x ≈ x′] (Ff is injective)

E(y) ⊢ ∃x(F (x, y)) (Ff is surjective)

Proof. Suppose f : (X,≈) → (Y,≈) is an isomorphism. Then there is a
g : (Y,≈) → (X,≈) such that g ◦ f = idX and f ◦ g = idY , that is

∃y(Ff(x, y) ∧ Fg(y, x
′)) ⊣⊢ [x ≈ x′] (4)

∃x(Fg(y, x) ∧ Ff (x, y
′)) ⊣⊢ [y ≈ y′]. (5)

To prove injectivity, suppose Ff (x, y) and Ff(x
′, y). Then E(y), so Fg(y, x

′′)
for some x′′ ∈ X. But by applying (4) twice, we get [x ≈ x′′] and [x′ ≈ x′′],
so [x ≈ x′].

To prove surjectivity, suppose E(y). Then by (5) we immediately have
∃x(Ff (x, y)).

Conversely, suppose Ff is injective and surjective. Then Fg(y, x) =
Ff (x, y) is a functional relation (Y,≈) → (X,≈).

Suppose Ff (x, y) and Fg(y, x
′) (that is Ff (x

′, y)) for some y ∈ Y , then
[x ≈ x′] by injectivity. So (4) holds by lemma 3.1. Similarly, (5) holds
by single-valuedness and lemma 3.1. Hence g is an inverse of f , and f is
isomorphic.

11



3.3 Some limits in Eff

Proposition 3.4. ({∗},≈) with [∗ ≈ ∗] = N is a terminal object of Eff .

Proof. Let (X,≈) be any object of Eff . We claim that the unique map

! : (X,≈) → ({∗},≈)

is represented by
F (x, ∗) = E(x).

It is easy to check that this is indeed a functional relation (X,≈) → ({∗},≈).
Let G be any other such functional relation. Then

G(x, ∗) ⊢ E(x)

be strictness and
E(x) ⊢ G(x, ∗)

by totality. So [G] =!, proving uniqueness.

Proposition 3.5. The product of (X,≈) and (Y,≈) in Eff is (X × Y,≈)
where

[(x, y) ≈ (x′, y′)] = [x ≈ x′] ∧ [y ≈ y′],

with projections π1 : (X × Y,≈) → (X,≈) and π2 : (X × Y,≈) → (Y,≈)
represented by

Fπ1
((x, y), x′) = [x ≈ x′] ∧E(y)

Fπ2
((x, y), y′) = E(x) ∧ [y ≈ y′].

Proof. It is easy to check that everything in the proposition is well-defined.
If we are given morphisms f : (A,≈) → (X,≈) and g : (A,≈) → (Y,≈),

then we define
< f, g >: (A,≈) → (X × Y,≈)

by
F<f,g>(a, (x, y)) = Ff (a, x) ∧ Fg(a, y).

It is again easy to check that this F<f,g> is indeed a functional relation. Also
we have

∃(x′, y)(Ff(a, x
′) ∧Gg(a, y) ∧ [x′ ≈ x] ∧E(y)) ⊣⊢ Ff (a, x)

∃(x, y′)(Ff(a, x) ∧Gg(a, y
′) ∧ E(x) ∧ [y′ ≈ y]) ⊣⊢ Fg(a, y)

so we have
π1◦ < f, g >= f and π2◦ < f, g >= g. (6)

12



Finally, any k : (A,≈) → (X × Y,≈) with

∃(x′, y)(Fk(a, (x
′, y)) ∧ [x′ ≈ x] ∧ E(y)) ⊣⊢ Ff(a, x)

∃(x, y′)(Fk(a, (x, y
′)) ∧ E(x) ∧ [y′ ≈ y]) ⊣⊢ Fg(a, y)

must satisfy
Fk(a, (x, y)) ⊣⊢ Ff(a, x) ∧ Fg(a, y)

so < f, g > is the unique morphism satisfying (6).

Proposition 3.6. The equalizer of f, g : (X,≈) → (Y,≈) in Eff is

e : (X,≈eq) → (X,≈)

with

[x ≈eq x
′] = [x ≈ x′] ∧ ∃y(Ff(x, y) ∧ Fg(x, y))

and

Fe(x, x
′) = [x ≈eq x

′].

Proof. It is easily checked that ≈eq and Fe are well-defined. We need to show
that f ◦ e = g ◦ e, that is

∃x′([x ≈eq x
′] ∧ Ff(x

′, y)) ⊣⊢ ∃x′([x ≈eq x
′] ∧ Fg(x

′, y)).

We prove the ⊢ direction. (The converse is proven similarly or follows by
lemma 3.1.) Suppose [x ≈eq x

′] and Ff (x
′, y) for some x′ ∈ X. By definition

of ≈eq we have Ff(x
′, y′) and Fg(x

′, y′) for some y′ ∈ Y . But since Ff is
single-valued, we have [y ≈ y′] and so Fg(x

′, y). So we have [x ≈eq x
′] and

Fg(x
′, y) for some x′ ∈ X, as required.

Suppose given k : (V,≈) → (X,≈) with f ◦k = g ◦k. We then claim that
Fk is also a functional relation (V,≈) → (X,≈eq). Relationality and totality
are trivial because [x ≈eq x

′] ⊢ [x ≈ x′]. Strictness will follow trivially once
we have proven single-valuedness. So suppose Fk(v, x) and Fk(v, x

′). We
need to prove [x ≈eq x

′], but we are only given that [x ≈ x′]. However, by
totality of Ff and Fg we find yf , yg ∈ Y such that Ff (x, yf) and Fg(x, yg).
As f ◦ k = g ◦ k, we deduce from Fk(v, x) and Ff (x, yf) that Fk(v, x

′′) and
Fg(x

′′, yf) for some x′′ ∈ X. But then we must have [x ≈ x′′] and so Fg(x, yf).
Hence we have ∃y(Ff(x, y) ∧ Fg(x, y)), so indeed [x ≈eq x

′].
We now obviously have

∃x′(Fk(v, x
′) ∧ [x′ ≈eq x]) ⊣⊢ Fk(v, x)

so k : (V,≈) → (X,≈) factors through e : (X,≈eq) → (X,≈).

13



Any other factorization l : (V,≈) → (X,≈eq) satisfies by definition

∃x′(Fl(v, x
′) ∧ [x′ ≈eq x]) ⊣⊢ Fk(v, x).

But both Fl and Fk are functional relations (V,≈) → (X,≈eq), so we have

Fl(v, x) ⊣⊢ Fk(v, k).

Hence the factorization is unique.

Proposition 3.7. A commutative square

(P,≈)
l

//

k

��

(Y,≈)

g

��

(X,≈)
f

// (Z,≈)

(7)

is a pullback in Eff if and only if

< k, l >: (P,≈) → (X × Y,≈)

is injective and

Ff (x, z) ∧ Fg(y, z) ⊢ ∃p(Fk(p, x) ∧ Fl(p, y)). (8)

Proof. Suppose that (7) is a pullback. There is a canonical way of construct-
ing the pullback, by taking the equalizer e : (X × Y,≈eq) → (X × Y,≈)
of f ◦ π1, g ◦ π2 : (X × Y,≈) → (Z,≈). The limit in (7) must be iso-
morphic to this canonical limit, in the sense that there is an isomorphism

h : (P,≈)
∼=
→ (X × Y,≈eq) such that

(P,≈)
∼=

h
&&

NNNNNNNNNNN

l

%%

k

**

(X × Y,≈eq)

e

((PPPPPPPPPPPP

(X × Y,≈)
π2

//

π1

��

(Y,≈)

g

��

(X,≈)
f

// (Z,≈)

commutes.

14



To prove that

< k, l >= e ◦ h : (P,≈) → (X × Y,≈)

is injective, suppose that we have F<k,l>(p, (x, y)) and F<k,l>(p′, (x, y)). Then
we have Fh(p, (x1, y1)), Fe((x1, y1), (x, y)) and Fh(p

′, (x′1, y
′
1)), Fe((x

′
1, y

′
1), (x, y))

for some x1, x
′
1 ∈ X and y1, y

′
1 ∈ Y . By the definition of Fe from 3.6, we have

[(x1, y1) ≈eq (x, y)] and [(x′1, y
′
1) ≈eq (x, y)]. Hence we have both Fh(p, (x, y))

and Fh(p
′, (x, y)). Since h is an isomorphism, h is injective by proposition

3.3, so [p ≈ p′] as required.
To prove (8), suppose that Ff(x, z) and Fg(y, z). Then Ff◦π1

((x, y), z) and
Fg◦π2

((x, y), z) by the construction of the product in 3.5. So Fe((x, y), (x, y))
by the definition of equalizer in 3.6. Since h is an isomorphism, h is surjective
by proposition 3.3, so Fh(p, (x, y)) for some p ∈ P . Consequently Fk(p, x)
and Fl(p, y) for some p ∈ P , so ∃p(Fk(p, x) ∧ Fl(p, y)) as required.

Conversely, suppose that < k, l > is injective and that (8) holds. To prove
that (7) is a pullback, it is sufficient to show that factorization of (7) through
the canonically constructed pullback is an isomorphism. By definition of
product in 3.5 and equalizer in 3.6, this factorization is represented by F<k,l>

as functional relation (P,≈) → (X × Y,≈eq). By proposition 3.3, we only
need to show that this functional relation is injective and surjective.

The injectivity of F<k,l> as functional relation (P,≈) → (X × Y,≈eq)
follows immediately from its injectivity as functional relation (P,≈) → (X×
Y,≈).

To prove surjectivity, suppose that Eeq(x, y). Then by definition of ≈eq,
we have Ff(x, z)∧Fg(y, z) for some z ∈ Z. By (8) we deduce that Fk(p, x)∧
Fl(p, y) for some p ∈ P . Thus, by definition of F<k,l>, we have F<k,l>(p, (x, y))
for this p ∈ P , as required.

3.4 Monomorphisms and subobjects

As a corollary of the description of pullbacks above, we can characterize the
monomorphisms of Eff .

Proposition 3.8. f : (X,≈) → (Y,≈) is a monomorphism if and only if

Ff is injective, that is

Ff (x, y) ∧ Ff(x
′, y) ⊢ [x ≈ x′].

15



Proof. f : (X,≈) → (Y,≈) is a monomorphism if and only if

(X,≈)
id

//

id
��

(X,≈)

f

��

(X,≈)
f

// (Y,≈)

is a pullback. By the previous proposition, this is equivalent to

Ff (x, y) ∧ Ff (x
′, y) ⊢ ∃x′′([x′′ ≈ x] ∧ [x′′ ≈ x′]).

But
∃x′′([x′′ ≈ x] ∧ [x′′ ≈ x′]) ⊣⊢ [x ≈ x′],

so the result follows.

Subobjects of (X,≈) can always be represented by monomorphisms of a
canonical form:

Proposition 3.9. Every subobject of (X,≈) can be represented by a monomor-

phism

ιG : (X,≈G)  (X,≈)

where

[x ≈G x′] = G(x) ∧ [x ≈ x′]

for some G ∈ P(N)X with

[x ≈ x′] ∧G(x) ⊢ G(x′) (G is relational)

G(x) ⊢ E(x) (G is strict)

and where

FιG(x, x′) = [x ≈G x′].

Proof. Given an injective functional relation Ff : (Y,≈)  (X,≈), we can
define

G(x) = ∃y(Ff(y, x)).

This G is relational and strict, and ιG : (X,≈G)  (X,≈) as defined in
the proposition is a well-defined monomorphism. Moreover, Ff is also a
functional relation (Y,≈) → (X,≈G) which is injective and also (by definition
of ≈G) surjective. So Ff represents an isomorphism k : (Y,≈) → (X,≈G).
Finally,

(Y,≈) //
f

//

%%

k

∼=

%%
KKKKKKKKK

(X,≈)

(X,≈G)
99

ιG

99ssssssssss

16



commutes, because

∃x′(Ff(y, x
′) ∧ [x′ ≈G x]) ⊢ Ff (y, x).

So ιG represents the same subobject as f , as required.

Conversely, if G ∈ P(N)X is relational (strictness is not necessary) then
ιG : (X,≈G)  (X,≈) as in the proposition above is always a well-defined
monomorphism. We will denote the subobject represented by this ιG as

G  (X,≈).

The subobjects of (X,≈) form a Heyting algebra, whose order relation is
described by the following proposition.

Proposition 3.10. If G,H ∈ P(N)X are relational, then

G ≤ H

as subobjects of (X,≈), if and only if

G ∧E ⊢X H.

Proof. If G ≤ H , then there is a monomorphism f : G  H such that

G //
ιG

//

��

f
��

??
??

??
??

(X,≈)

H
;;

ιH

;;xxxxxxxxx

(9)

commutes. Suppose G(x) ∧ E(x). Then FιG(x, x), so since the diagram
commutes there is an x′ ∈ X with FιH (x′, x) = H(x′) ∧ [x′ ≈ x]. Because H
is relational, we get H(x).

Conversely, if G(x) ∧ E(x) ⊢ H(x), then

Ff (x, x
′) = FιG(x, x′) = G(x) ∧ [x ≈ x′]

is also an injective functional relation G  H (it’s strict per assumption),
making (9) commute. So G ≤ H .

Remark 3.11. If we require that G and H in the proposition are also strict
(which is not a significant restriction by proposition 3.9), then G ≤ H if and
only if G ⊢X H . This is the way in which the proposition is usually presented
in the literature (for example [1] and [10]). However, we will allow subobjects
of (X,≈) also to be represented by elements of P(N)X that are only relational
and not strict. This approach slightly simplifies in propositions 3.12 and 4.3.

17



Proposition 3.12. The Heyting algebra structure of Sub(X,≈) corresponds

to the Heyting algebra structure of (P(N)X ,⊢X).

Proof. Suppose G,H  (X,≈) are two subobjects, represented by G,H ∈
P(N)X .

We claim that the meet of G and H in Sub(X,≈) is represented by
(G∧H) ∈ P(N)X . Indeed, G∧H is relational if G and H are, so it represents
a subobject. By the proposition above we have G∧H ≤ G and G∧H ≤ H .
And if F ∈ P(N)X satisfies F ∧E ⊢X G and F ∧E ⊢X H , then

F ∧E ⊢X G ∧H

by definition of join in (P(N)X ,⊢). Hence F ≤ G and F ≤ H implies
F ≤ G ∧H , as required.

Similarly, the join of G and H in Sub(X,≈) is represented by (G∨H) ∈
P(N)X .

Finally we claim that the Heyting implication of G and H in Sub(X,≈)
is represented by (G → H) ∈ P(N)X . Indeed, G → H is relational if
G and H are, so it represents a subobject. And F ∧ G ≤ H if and only
if F ∧ G ∧ E ⊢X H , if and only if F ∧ E ⊢X (G → H), if and only if
F ≤ (G→ H).

3.5 It’s a topos

Theorem 3.13. Eff is a topos.

Proof. We’ve already proved that Eff has a terminal object, binary products
and equalizers. Hence Eff has all finite limits. So we only need to prove that
Eff has a subobject classifier and exponentials.

For the subobject classifier, take

Ω = (P(N),≈)

with
[A ≈ B] = (A→ B) ∧ (B → A).

Hence an element of [A ≈ B] is a pair of two recursive funtions, one mapping
elements of A to elements of B and the other vice versa. The map ⊤ : 1  Ω
is represented by

F⊤(∗, A) = [A ≈ N].

Then, given a subobject R  (X,≈), the unique morphism χR : (X,≈) → Ω
corresponding to it, is represented by

FχR
(x,A) = E(x) ∧ [R(x) ≈ A].

18



That this makes

R
��

��

// 1
��

⊤
��

(X,≈)
χR

// (P(N),≈)

(10)

a pullback is easily verified, using the description of pullbacks in proposition
3.7. The only trick needed, is the fact that for all A ⊆ N,

A ⊣⊢ [N ≈ A].

Indeed, given n ∈ A, we can form the constant function with value n to find
an element of [N ≈ A]. And given an element of [N ≈ A], we have a recursive
function mapping elements of N to elements of A, and hence we can find an
element of A.

To prove uniqueness of χR, suppose that F is any functional relation
(X,≈) → Ω making (10) a pullback. We need to prove that

F (x,A) ⊢ FχR
(x,A).

By definition of χR is sufficient to prove that

F (x,A) ⊢ (A→ R(x)) ∧ (R(x) → A),

and using the Heyting algebra structure of proposition 2.1, it suffices to prove

F (x,A) ∧ A ⊢ R(x)

F (x,A) ∧ R(x) ⊢ A.

This follows easily, again using proposition 3.7.
The underlying set of the exponential (Y,≈)(X,≈) of two objects (X,≈)

and (Y,≈), is P(N)X×Y , the set of all P(N)-valued predicates on X × Y .
Next define a P(N)-valued predicate E on P(N)X×Y , expressing that some

P(N)-valued predicate is a functional relation, by

E(F ) = ∀x, x′, y, y′(F (x, y) ∧ [x ≈ x′] ∧ [y ≈ y′] → F (x′, y′))

∧ ∀x, y(F (x, y) → E(x) ∧ E(y))

∧ ∀x, y, y′(F (x, y) ∧ F (x, y′) → [y ≈ y′])

∧ ∀x(E(x) → ∃y(F (x, y))).

Then we can define the equality predicate of the exponential (Y,≈)(X,≈)

by

[F ≈ G] = E(F ) ∧ E(G)

∧ ∀x, y(F (x, y) → G(x, y))

∧ ∀x, y(G(x, y) → F (x, y)).

19



We will not write out the straightforward but tedious verification that this
in indeed an exponential.

4 The natural number object of Eff

A natural number object of a category is an object X together with
morphisms 0 : 1 → X and s : X → X, such that for every object Y
with morphisms 0′ : 1 → Y and s′ : Y → Y , there is a unique morphism
f : X → Y such that

1
0

//

0′
��

??
??

??
??

X
s

//

f

��

X

f

��

Y
s′

// Y

commutes.
For example, in the category of sets, the set of natural numbers with zero

and successor functions is a natural number object.

Proposition 4.1. Eff has a natural number object (N,≈), where

[n ≈ m] = {n} ∩ {m},

with 0 : 1 → (N,≈) represented by

F0(∗, n) = {0} ∩ {n}

and with s : (N,≈) → (N,≈) represented by

Fs(n,m) = {n+ 1} ∩ {m}.

Proof. It is easy to check that everything in the proposition is well-defined.
Suppose we have an object (Y,≈) ∈ Eff and morphisms 0′ : 1 → (Y,≈)

and s′ : (Y,≈) → (Y,≈).

1
0

//

0′
!!

DD
DD

DD
DD

D (N,≈)
s

//

f

��

(N,≈)

f

��

(Y,≈)
s′

// (Y,≈)

(11)

Let Ff ∈ P(N)N×Y be defined by

Ff(n, y) = E(n) ∧ ∃y′ (F0′(∗, y
′) ∧ Fs′n(y′, y)) .

20



That Ff is a functional relation (N,≈) → (Y,≈) follows immediately from
the fact that F0′ and Fs′ are functional relations.

To prove that (11) commutes, it is by lemma 3.1 sufficient to prove that

F0′(∗, y) ⊢ ∃n(F0(∗, n) ∧ Ff(n, y)) (12)

∃y′(Ff (n, y
′) ∧ Fs′(y

′, y)) ⊢ ∃n′(Fs(n, n
′) ∧ Ff (n

′, y)). (13)

To prove (12), suppose that F0′(∗, y). Then by definition of Ff we imme-
diately find Ff(0, y), and obviously we also have F0(∗, 0), as required.

To prove (13), suppose that Ff (n, y
′) and Fs′(y

′, y) for some y′ ∈ Y . Then
by definition of Ff we immediately find Ff(n + 1, y), and obviously we also
have Fs(n, n+ 1), as required.

Finally, we have to prove that f is the unique morphism such that (11)
commutes. So suppose that g : (N,≈) → (Y,≈) also makes (11) commute.
We prove that

Fg(n, y) ⊢ Ff (n, y).

Indeed, given Fg(n, y), we use strictness to find n ∈ N. Then we can apply

∃n′(Fs(n, n
′) ∧ Fg(n

′, y)) ⊢ ∃y′(Fg(n, y
′) ∧ Fs′(y

′, y))

n times, and
∃n(F0(∗, n) ∧ Fg(n, y)) ⊢ F0′(∗, y)

once, to find
∃y′(F0′(∗, y

′) ∧ Fs′n(y′, y))

and hence Ff (n, y).

We are now almost ready to rediscover Kleene’s realizability inside the
effective topos. We will define a structure in Eff , such that a sentence is true
in this structure if and only if it’s realizable in Kleene’s sense.

For any first order language L, an L-structure of a topos is an object X
of the topos, with for every l-ary function symbol f a morphism f : X l → X,
and for every l-ary relation symbol R a subobject R  X l.

Remember that in Kleene’s definition of realizability, we worked with a
first order language where the function and relation symbols correspond to
total recursive functions and relations. Given such a language L, we define
the standard L-structure in Eff to have as underlying object the natural
number object (N,≈), with for each l-ary function symbol f a morphism
f : (Nl,≈) → (N,≈) defined by

Ff (~n,m) = E(~n) ∧ [f(~n) ≈ m],

21



and for each k-ary relation symbol R a subobject

R′
 (Nl,≈)

where R′ ∈ P(N)Nl

is defined by

R′(~n) =

{

{0} if R(~n) holds
∅ otherwise.

Recapitulate how terms and formulas are interpreted in an L-structure.
Every term t with free variables among ~x = x1, · · · , xk is interpreted as a
morphism

Xk
J~x.tK

−−−−→ X.

Intuitively, the interpretation maps each value for the free variables to the
corresponding value of the term. The interpretation is defined inductively:
a variable xi is interpreted as the projection πi, and a composite term
f(s1, · · · , sl) is interpreted as

Xk
(J~x.s1K,··· ,J~x.slK)

−−−−−−−−−−−−→ X l
f

−−−−→ X.

Similarly, each formula ϕ with free variables among ~x is interpreted as a
subobject

J~x.ϕK  Xn.

Intuitively, the interpretation is the subobject of all values of the free vari-
ables for which the formula is true. The interpretation is again defined induc-
tively. An atomic formula R(t1, · · · , tl) is interpreted by taking the pullback

J~x.R(t1, · · · , tl)K // //

��

Xk

(J~x.t1K,··· ,J~x.tlK)

��

R // // X l

Quantifier-free formulas are interpreted according to the Heyting algebra
structure of the subobjects of X.

For quantifiers ∃y and ∀y, consider the functor

π∗
~x : Sub(Xk) → Sub(Xk+1)

whose assignation is given by pulling back along

π~x : Xk+1 → Xk

(~x, y) 7→ (~x).

22



This functor π∗
~x has left and right adjoints

∃π~x, ∀π~x : Sub(Xk+1) → Sub(Xk).

The interpretation of ∃yψ is then given by

J~x.∃yψK = ∃π~xJ~x, y.ψK

and similarly for ∀yψ.
The next two propositions describe how quantification works for the nat-

ural number object of Eff .

Proposition 4.2. Suppose R  (N,≈)k is a subobject, where R ∈ P(N)Nk

.

Suppose f : N
l → N

k is a total recursive function. Define a morphism

g : f ∗R → R by

Fg(~n, ~m) = R(~m) ∧ E(~n) ∧ [f(~n) ≈ ~m]

for all ~n ∈ N
l and ~m ∈ N

k. Then

f ∗R //

ιf∗R
//

g

��

(Nl,≈)

f

��

R //

ιR
// (Nk,≈)

(14)

is a pullback.

Proof. First note that [~n ≈ ~n′] is empty for distinct ~n and ~n′. Hence every el-
ement of P(N)N

k

and P(N)N
l

is relational. Remember that f ∗R = (Nl,≈f∗R)
where

[~n ≈f∗R
~n′] = f ∗R(~n) ∧ [~n ≈ ~n′]

= R(f(~n)) ∧ [~n ≈ ~n′].

It is easy to verify that Fg is a functional relation f ∗R → R, where we use the
fact that f is recursive to prove totality. It is equally easy to show that (14)
commutes, and < g, ιf∗R > is injective because ιf∗R is. So by proposition 3.7
we only need to prove that

FιR(~m, ~m′) ∧ Ff(~n, ~m′) ⊢ ∃~n′(Fιf∗R
(~n′, ~n) ∧ Fg(~n′, ~m))

which is easily verified by filling in the definitions of these functional relations,
and by choosing ~n′ = ~n.

23



Proposition 4.3. Let f be as in the previous proposition. The left and right

adjoints of f ∗ : Sub(Nk,≈) → Sub(Nl,≈) are given by respectively

G 7→ ∃f(G ∧E) (15)

and

G 7→ ∀f(E → G). (16)

Proof. We first verify that these assignments are functors, that is they pre-
serve the order on subobjects. So supposeG ≤ H as subobjects of Sub(Nl,≈),
that is

G ∧ E ⊢Nl H. (17)

Then also G ∧ E ⊢Nl H ∧ E and because ∃f is order-preserving
∃f(G ∧ E) ⊢Nl ∃f(H ∧ E). Hence also ∃f(G ∧E) ≤ ∃f(H ∧E).

Similarly, because (P(N)Nl

,⊢Nl) is a Heyting algebra, we get
(E → G) ⊢Nl (E → H) from (17). Using the fact that ∀f is order-preserving,
we find ∀f(E → G) ≤ ∀f(E → H).

Now if E(~n) for some ~n ∈ N
l with f(~n) = ~m ∈ N

k, then we can use the
fact that f is a recursive function to get E(~m). Hence we have

∃f(G ∧ E) ⊣⊢Nk ∃f(G ∧ E) ∧E.

For the same reason, we have

f ∗(G) ∧ E ⊣⊢Nl f ∗(G ∧ E) ∧E.

Hence the following are equivalent for F ∈ P(N)Nk

and G ∈ P(N)N l

:

G ≤ f ∗F

G ∧ E ⊢Nl f ∗F

∃f(G ∧ E) ⊢Nk H

∃f(G ∧E) ∧ E ⊢Nk H

∃f(G ∧ E) ≤ H

so (15) is indeed a left adjoint of f ∗.
Similarly, the following are equivalent:

f ∗F ≤ G

f ∗F ∧E ⊢Nl G

f ∗(F ∧E) ∧E ⊢Nl G

f ∗(F ∧E) ⊢Nl E → G

F ∧E ⊢Nk ∀f(E → G)

F ≤ ∀f(E → G)

so (16) is indeed a right adjoint of f ∗.

24



Now we can finally prove that the standard interpretation of formulas in
Eff corresponds to Kleene’s realizability.

Proposition 4.4. For each formula ϕ, with free variables among ~x = x1, · · · , xk,

define [ϕ] ∈ P(N)Nk

by

[ϕ](~n) = { e ∈ N | e realizes ϕ(~n) } .

Then the interpretation J~x.ϕK of ϕ in the standard L-structure is exactly

[ϕ]  N
k.

Proof. We use induction on the structure of the formula ϕ. For atomic formu-
las, the proposition follows immediately from the definition of the standard
L-structure. The induction steps for ∧, ∨ and → follows from proposition
3.12, and the fact that the Heyting algebra structure of (Nk,⊢) corresponds
pointwise to the Kleene’s definition of realizability of ∧, ∨ and →. So we
only need to check existential and universal quantifiers.

Suppose ϕ = ∃y(ψ). By proposition 4.3, the interpretation of ϕ is given
by

∃y([ψ](~m, y) ∧ E(~m, y)).

But it is easy to show that

∃y([ψ](~m, y) ∧ E(~m, y)) ∧ E(~m) ⊣⊢ ∃y([ψ](~m, y) ∧ {y}) ∧ E(~m),

so by proposition 3.10 this subobject is also represented by

∃y([ψ](~m, y) ∧ {y}),

which is exactly [ϕ](~m) according to Kleene’s definition.
Similarly, suppose ϕ = ∀y(ψ). By proposition 4.3, the interpretation of

ϕ is given by
∀y(E(~m, y) → [ψ](~m, y)).

But it is easy to show that

∀y(E(~m, y) → [ψ](~m, y)) ∧ E(~m) ⊣⊢ ∀y({y} → [ψ](~m, y)) ∧ E(~m),

so by proposition 3.10 this subobject is also represented by

∀y({y} → [ψ](~m, y)),

which is exactly [ϕ](~m) according to Kleene’s definition.

As an immediate corollary we have

Proposition 4.5. A sentence ϕ can be realized in Kleene’s sense if and only

if it is true for the standard L-structure in Eff .

25



5 Further properties and generalizations

The discovery of Kleene’s realizability inside the effective topos is not the
only interesting thing happening in Eff . As Van Oosten [9] writes, in the
effective topos “many bits of research, up to then unrelated, fell into their
right place”. For example, from the natural number object (N,≈) one can
construct a real number object in Eff , similarly to the construction of the
ordinary real numbers by Dedekind cuts or by Cauchy sequences. This real
number object is given by (Rrec,≈) where Rrec is the set of recursive reals
(that is, real numbers with recursive Cauchy sequences converging to them)
and

n ∈ [r ≈ r′]

if and only if r = r′ and n encodes a Cauchy sequences converging to r.
From there, one can develop analysis inside the effective topos. This analysis
turns out to correspond to so-called recursive analysis, where statements
such as “every function from the reals to the reals is continuous” are valid.
More details about analysis inside Eff and other important properties of the
effective topos can be found in the references.

Andy Pitts [2] discovered that the construction of the effective topos
is a particular example of a more general construction: the tripos-to-topos
construction. Let C be any category and let Heytpre be the category of
Heyting prealgebras. A C-tripos is a pseudofunctor Cop → Heytpre that
satisfies a number of extra axioms (see [10]). The effective topos arises from
the Set-tripos given by

X 7→ (P(N)X ,⊢X)

f 7→ f ∗.

The axioms of a tripos ensure that we can construct a topos from any tripos,
in a way similar to the definition of the effective topos.

Another way to generalize the construction of the effective topos, is by
considering partial combinatory algebras (pcas), sometimes also called
Schönfinkel algebras after [8]. A pca generalizes the way in which we can
apply natural numbers to other natural numbers by

m(n) = output of the recursive function with number m to input n.

Indeed, a pca is a set Λ together with a partial application map Λ×Λ → Λ,
such that there are k, s ∈ Λ with

(ka)b = a

((sa)b)c ≍ (ac)(bc)

26



for all a, b, c ∈ Λ. Here ≍ means that one side is defined if the other is, and in
that case both sides are equal. The element ka ∈ Λ obviously behaves as the
constant function with value a. But by combining k and s we can also find
elements of Λ that handle composition, evaluation, pairing and projection,
etc. With all this we can develop a theory of P(Λ)-valued predicates, just
like the P(N)-valued predicates that we discussed in section 2. In this way,
every pca Λ gives rise to a Set-tripos given by

X 7→ (P(Λ)X ,⊢X)

f 7→ f ∗,

from which we can construct a realizability topos.
The pca where the natural numbers encode recursive functions (and which

gives rise to the effective topos) is called the first Kleene algebra. Similarly,
for any non-recursive set E ⊆ N there is a pca where the natural numbers
encode oracle machines with an oracle for E. The topos arising from such a
pca is a sheaf subtopos of the effective topos. But there are also very different
examples of pcas (see for example [10]).

A useful approach in studing pcas and the toposes that arise from them,
is to consider the category Ass(Λ) of Λ-valued assemblies for a pca Λ. A Λ-

valued assembly is a pair (X,ϕ) where X is a set and ϕ ∈ (P(Λ) \ {∅})X .
A morphism between Λ-valued assemblies (X,ϕ) and (Y, ψ) is a function
f : X → Y which is tracked by some a ∈ Λ, which means that if b ∈ ϕ(x)
then ab ∈ ψ(f(x)). The realizability topos that arises from the pca Λ is then
the same as the effectivization of the category Ass(Λ). More details can be
found in [3].

6 Further reading

Martin Hyland’s article [1] from 1982, the first article about the effective
topos, is still a good place to look for more details, especially since the
content of this essay corresponds fairly well to the first sections of Hyland’s
article. A more modern and more extensive exposition can be found in Van
Oosten’s [10], the first and so far only book on realizability. A nice historical
overview can be found in [9].

References

[1] J. M. E. Hyland, The effective topos, The L.E.J. Brouwer Centenary
Symposium (A. S. Toelstra and D. van Dalen, eds.), North-Holland Pub-
lishing Company, 1982, pp. 165–216.

27



[2] J. M. E. Hyland, P. T. Johnstone, and A. M. Pitts, Tripos theory, Math-
ematical Proceedings of the Cambridge Philosophical Society 88 (1980),
205–232.

[3] P. T. Johnstone, Sketches of an elephant: A topos theory compendium,

vol. 3, Oxford Logic Guides, to be published.

[4] S. C. Kleene, On the interpretation of intuitionistic number theory, Jour-
nal of Symbolic Logic 10 (1945), no. 4, 109–124.

[5] , Realizability, a retrospective survey, Cambridge Summer School
in Mathematical Logic (A. R. D. Mathias and H. Rogers, eds.), Springer
Lectures Notes, vol. 337, Springer-Verlag, 1973.

[6] Saunders Mac Lane and Ieke Moerdijk, Sheaves in geometry and logic:

A first introduction to topos theory, Springer, 1992.

[7] David Nelson, Recursive functions and intuitionistic number theory,
Transactions of the American Mathematical Society 61 (1947), 307–368.

[8] M. Schönfinkel, Über die bausteine der mathematische logik, Mathema-
tische Annalen 92 (1924), 305–316.

[9] Jaap van Oosten, Realizability: a historical essay, Mathematical Struc-
tures in Computer Science 12 (2002), 239–263.

[10] , Realizability: an introduction to its categorical side, Studies in
Logic and the Foundations of Mathematics, vol. 152, Elsevier, 2008.

28


