
A New Total Injection Betting Strategy

Stijn Vermeeren

School of Mathematics, University of Leeds, Leeds, LS2 9JT, United Kingdom,
mmsv@leeds.ac.uk

Abstract. I give a new method to construct a partial computably ran-
dom sequence that is not total injection random.

Amongst infinite sequences of 0’s and 1’s there are some that are very regular,
like

0101010101010101 . . .

whereas others seem quite random, such as a sequence beginning with

0110110001011001 . . .

might. Yet from a probabilistic point of view, both sequences are equally likely
as outcomes of a random experiment, such as a repeated coin toss. Algorith-
mic randomness can be used to solve this paradox. In algorithmic randomness,
computability theory is used to define what is to be considered a regularity in a
sequence, and which sequences can be said to be truly random. The exact defini-
tion, however, can be done in many different ways that all make sense, without
there being one definition that is obviously superior. Hence, the study of the
relative strength of the many definitions of randomness has attracted a lot of
attention over the years. In this article, I investigate the relative strength of total
injection randomness and partial computable randomness. These notions were
proven to be incomparable in 2009 by Bienvenu, Hölzl, Kräling and Merkle [1]
by studying the initial segment complexity of random sequences of the different
types. I will give a new construction of a partial computable random sequence
Z that is not total injection random. My construction is more direct, as the
total injection betting strategy that succeeds on Z directly approximates the
supermartingale used to construct Z.

1 Notation

In this article we will consider infinite sequences of 0’s and 1’s, which we can
treat as elements of 2ω (i.e. functions N = {0, 1, 2, · · · } → {0, 1}). Such sequences
will be represented by capital letters, usually Z.

We will also use finite strings of 0’s and 1’s, which we can treat as elements
of 2n (i.e. functions n = {0, 1, · · · , n − 1} → {0, 1}) for some n ∈ N. We will
use lowercase Greek letters (usually σ or τ) to represent strings. If σ ∈ 2n, then
|σ| = n is called the length of the string. The unique empty string of length 0 is

written ∅, and στ is the string of length |σ| + |τ | obtained by concatenating σ

and τ . The set of strings of length less than or equal to n is written 2≤n. 2<ω is
the set of all finite strings of any length.

If f is a function, then f ↾A is the restriction of f to the domain A. In
particular if Z ∈ 2ω, then Z↾n∈ 2n is the initial segment of Z of length n.

We fix a computable pairing function 〈·, ·〉, that is a computable bijection

〈·, ·〉 : N × N → N.

So 〈n0, n1〉 is a natural number that encodes the ordered pair (n0, n1). We extend
this to k-tuples for any k, by defining inductively

〈n0, n1, . . . , nk−1〉 = 〈n0, 〈n1, . . . , nk−1〉〉.

We assume that the reader is familiar with the basics of computability theory,
in particular with how to effectively enumerate all computable functions. We use
square brackets [s] to indicate that computations are only done up to that stage
s. Familiarity with algorithmic randomness is not strictly required, but will be
helpful to understand the proofs and to see the results in context. For background
reading on algorithmic randomness, see [7] or [2].

2 Computable Randomness

Computable randomness is one of the most fundamental definitions of random-
ness. It is appealing because it has a very natural definition, motivated by the
fact that we expect the digits of a random sequence to be unpredictable. This is
captured by requiring that one cannot make an unbounded profit by betting on
the value of successive digits of the random sequence. More precisely, a betting
strategy starts with a certain amount of money (capital), and can then place bets
on the digits of an infinite sequence. Placing a bet on a digit means assigning a
part of the current capital to the outcome 0 and another part to the outcome 1.
The money placed on the correct outcome is doubled, but the money placed on
the incorrect outcome is lost. A betting strategy starts by placing a bet on the
first digit, which is evaluated, and losses are substracted or gains added to the
capital. With the new capital, the betting strategy can then place a bet on the
second digit, which is allowed to depend on the value of the first digit, which
was already evaluated. And so on. A betting strategy succeeds on an infinite
sequence Z if the betting strategy makes unbounded profits when betting on
the digits of Z. A sequence Z is computably random if no computable betting
strategy succeeds on Z.

The best way to treat a betting strategy as a mathematical object, is by
using martingales. For any betting strategy, we can consider a capital function
B that maps each string σ ∈ 2<ω to the amount of money the betting strategy
has after betting on σ. Thus we have a function

B : 2<ω → R≥0

that satisfies

B(σ) =
B(σ0) + B(σ1)

2
(1)

for all strings σ. Any such function is called a martingale. Equation (1) is a
fairness condition: the expected value of the new capital must be equal to the
initial capital. Any betting strategy, as above, gives rise to a martingale, and
every martingale corresponds to a betting strategy. A martingale B succeeds on
a sequence Z if

lim sup
n→∞

B(Z↾n) = ∞. (2)

A sequence Z is computably random (CR) if no computable martingale (that
is: a martingale which is computable as a function 2<ω → R≥0) succeeds on Z.

Note 1. – We can loosen the requirement (1) to an inequality:

B(σ) ≥
B(σ0) + B(σ1)

2
. (3)

Any function B : 2<ω → R≥0 satisfying just this inequality is called a
supermartingale. Supermartingales do not succeed on more sequences than
ordinary martingales, because the only thing they can do more in terms of
betting strategies, is to throw away some money at each bet.

– Infinite profits could be formalized using lim instead of lim sup, without
changing the notion of computable randomness. This is justified by a lemma
called the savings trick. (See e.g. [2], 6.3.8 or [7], 7.1.14)

– We can assume that any (super)martingale has only rational values, where
we represent a rational number as a pair of natural numbers (numerator
and denominator). Indeed we can effectively approximate each computable
(super)martingale B : 2<ω → R≥0 with a computable (super)martingale
D : 2<ω → Q≥0 such that whenever B succeeds on Z, then also D succeeds
on Z. The important advantage of this is that with rational values, we can
decide equality. ([9,10]; see also [2], 7.1.2 or [7])

The notion of computable randomness can be strengthened in two directions:
by allowing partial computable martingales and by allowing nonmonotonic mar-
tingales.

A partial martingale is a partial function B : 2<ω → R≥0 that still satisfies
the fairness condition

B(σ) =
B(σ0) + B(σ1)

2
(4)

when all values involved are defined. Some values of B may be undefined (the
betting strategy might be forever undecided on certain bets). But once either
value on the right hand side in (4) is defined, both other values in the equation
must be defined (we can only bet on the next digit after σ, if we know how much
money we have at σ, and once we know how much money we want to make with
some outcome, we also know how much money we still have left for the other

outcome). Success for a partial martingale B on a sequence Z is defined exactly
like for total martingales:

lim sup
n→∞

B(Z↾n) = ∞, (5)

where now we obviously require that B is defined on all initial segments of Z. A
sequence Z is partial computably random (PCR) if no partial computable
martingale succeeds on Z.

The second variation on computable randomness is to allow betting on the
digits of a sequence in a non-monotonic order. That is, we might be able to bet
on the second digit first, and depending on that outcome, we can decide how
to bet on the first digit. It is not important to bet on all digits of a sequence;
we can ignore certain digits anyway by betting evenly on them, such that our
capital stays the same no matter what the digit’s value is. The order in which to
bet on the digits can be fixed in advance, e.g. by a computable permutation or
injection. A (partial) computable permutation/injection betting strategy is then
a pair 〈f, B〉 of a computable permutation/injection f and a (partial) computable
martingale B, and 〈f, B〉 succeeds on Z if

lim sup
n→∞

B((Z ◦ f)↾n) = ∞. (6)

This gives rise to the notions of partial/total permutation randomness
(PPR/TPR) and partial/total injection randomness (PIR/TIR). (Total
permutation randomness will in fact turn out to be equivalent with computable
randomness.) We can take the nonmonotonicity even further by not fixing the
order in advance, and instead allowing the next digit to be on to depend on the
outcomes of the previous bets. This gives rise to the notion of Kolmogorov-
Loveland randomness (KLR), of which the partial and total variants are
equivalent.

All of the Notes 1 are also valid for all partial and nonmonotonic notions of
computable randomness.

We will look at the relative strength of all of these randomness notions in
the final section of this article. First we concentrate on constructing a sequence
that is PCR but not TIR.

3 Diagonalizing against Partial Computable Betting

Strategies

We want to construct a sequence Z that is PCR. That is: no partial computable
betting strategy may succeed on Z. Therefore we need to diagonalize against all
partial computable martingales with some fixed starting capital, say 1. This is
not difficult: if {B0, B1, · · · } is an enumeration of all such martingales, then we
can add them together into one new total supermartingale L. Values that are
undefined can be taken equal to 0 in this addition. In particular, we let

Vk(σ) =

{

Bk(σ) if Bk(σ)↓
0 otherwise,

and
L =

∑

k∈N

2−kVk. (7)

Then L is easily seen to be a well-defined supermartingale. Also, if any Bk

succeeds on Z, then also Vk and L succeed on Z. So if we choose Z such that
L fails on Z, then Z is PCR. This can be done by taking Z to be the left-most
non-ascending path on L considered as a tree, i.e. if Z↾n is defined, then we take

Z(n) =

{

0 if L(Z↾n 0) ≤ L(Z↾n)
1 otherwise.

In the second case, as L is a supermartingale, we have L(Z ↾n 1) ≤ L(Z ↾n).
Hence lim supn→∞ B(Z↾n) ≤ L(∅) and L fails on Z, as required.

Now we want Z to be PCR, but at the same time we want there to be a
total injection betting strategy that succeeds on Z. This means that we need
to make the construction of Z more effective, so that a betting strategy can
take advantage of that. First of all we want the enumeration {B0, B1, · · · } to
be effective. This can be achieved by effectively enumerating all Turing machine
programs {φ0, φ1, φ2, · · · }, putting Bk(∅) = 1, and putting Bk(σ0) = φk(σ0)
and Bk(σ1) = φk(σ1) at the first stage when Bk(σ) is already defined, φk(σ0)↓,

φk(σ1)↓ and Bk(σ) = φk(σ0)+φk(σ1)
2 . Then {B0, B1, · · · } is an effective enumer-

ation of all partial computable martingales with starting capital 1, in the sense
that Bk(σ) can be effectively computed from k and σ.

Next, we want to be able to compute the values of L more easily, by avoiding
infinite sums in (7). This can be done by fixing an increasing sequence of nat-
ural numbers (nk), and by applying betting strategy Bk only from position nk

onwards. Formally, we let

Vk(σ) =











1 if |σ| ≤ nk
Bk(σ)

Bk(σ↾nk
) if |σ| > nk, Bk(σ)↓ and Bk(σ↾nk

) > 0

0 otherwise,

and
L =

∑

k∈N

2−kVk

like before. Now, to compute any particular value of L, we only need to know
the value of Bk for finitely many k. But still, if any Bk succeeds on Z, then also
Vk and L succeed on Z. So we can choose Z like before to make Z PCR. The
sequence we obtain for certain values of (nk) will be called Z(nk).

The techniques for constructing PCR sequences outlined above are well-
known. In particular, look at [7] for more explanations and applications.

4 A Total Injection Betting Strategy That Succeeds

4.1 Approximations for L and Z

We claim that, for a suitable choice of (nk), the PCR sequence Z(nk) is not TIR.
To prove this, we construct a total injection betting strategy that succeeds on

Z(nk). The sequence (nk) will not be computable, so the betting strategy will
have to guess the values of (nk). Hence we introduce the following notation:

Vk,n(σ) =







1 if |σ| ≤ n
Bk(σ)

Bk(σ↾n) if |σ| > n, Bk(σ)↓ and Bk(σ↾n) > 0

0 otherwise,

for any k, n ∈ N, and

L
〈n0,...,ni−1〉
i =

i−1
∑

k=0

2−kVk,nk
.

Also, we have to make all computations in our strategy finite, so we need to
approximate as follows:

Vk,n[s](σ) =







1 if |σ| ≤ n
Bk(σ)

Bk(σ↾n) if |σ| > n, Bk[s](σ)↓, and Bk(σ↾n) > 0

0 otherwise,

and

L
〈n0,...,ni−1〉
i [s] =

i−1
∑

k=0

2−kVk,nk
[s].

So L
〈n0,...,ni−1〉
i [s] sums only the first i martingales, computed up to stage s, and

it uses given values for the sequence (nk).

We let Z
〈n0,...,ni−1〉
i be the left-most non-ascending path of L

〈n0,...,ni−1〉
i , and

Z
〈n0,...,ni−1〉
i [s] the left-most non-ascending path of L

〈n0,...,ni−1〉
i [s]. Our betting

strategy will use these Z
〈n0,...,ni−1〉
i [s] (which are computable) as guesses for the

actual Z.

4.2 The Injection

As PCR implies TPR, we need to make essential use of the fact that we are
allowed to bet on the positions of Z(nk) in an order given by a computable
injection. Equivalently, the order may be given by a computable enumeration of
an infinite subset of N. We achieve this by uniformly assigning a computation to
each k ∈ N, and by betting on k at the stage that the computation corresponding
to k terminates, if ever. In particular, we will bet on k = 〈i, 〈n0, . . . , ni−1〉, l, m〉
at the first stage s that

∣

∣

∣

{

j ∈ {0, . . . , i − 1} : Bj [s]
(

Z
〈n0,...,ni−1〉
i [s]↾k+1

)

↓
}∣

∣

∣ = l.

At this point, and if i has a value that we are still interested in, we will guess that

all computations involved in defining Z
〈n0,...,ni−1〉
i ↾k that converge, have halted

by stage s; hence we will bet on Z
〈n0,...,ni−1〉
i [s](k) = Z(nk)(k). Under certain

conditions, this guess is guaranteed to be correct. In particular the following
lemma holds:

Lemma 1. Suppose that

(a) l =
∣

∣

∣

{

j ∈ {0, . . . , i − 1} : Bj is defined along Z
〈n0,...,ni−1〉
i

}∣

∣

∣, and

(b) m is sufficiently large.

Let k = 〈i, 〈n0, . . . , ni−1〉, l, m〉. Then there is a stage s such that

∣

∣

∣

{

j ∈ {0, . . . , i− 1} : Bj[s]
(

Z
〈n0,...,ni−1〉
i [s]↾k+1

)

↓
}∣

∣

∣ = l. (8)

Moreover, at this stage we have

Z
〈n0,...,ni−1〉
i [s](k) = Z

〈n0,...,ni−1〉
i (k).

Proof. We abbreviate Zi = Z
〈n0,...,ni−1〉
i .

There are only finitely many n ∈ N such that Bj(Zi ↾n) ↓ for some j ∈
{0, . . . , i− 1} such that Bj is not defined along Zi. Let N be the maximal such
n. Let s0 be the first stage such that

Bj [s](Zi↾n)↓ if and only if Bj(Zi↾n)↓

for all j ∈ {0, . . . , i − 1} and all n ≤ N .
Given (a), (8) will hold for s large enough. But note that the larger we take

m, the larger k is, and the longer it will take for (8) to hold. So we can take m

large enough to have k > N and s ≥ s0.
By choice of N , s0 and m, we have

Zi↾N= Zi[s]↾N ,

and Bj(Zi↾N 0)↑ and Bj(Zi↾N 1)↑ for all j ∈ {0, . . . , i − 1} such that Bj is not
defined along Zi. Hence, when (8) holds, we must have

{j ∈ {0, . . . , i − 1} : Bj [s] (Zi[s]↾k+1)↓}

⊆ {j ∈ {0, . . . , i − 1} : Bj is defined along Zi}

and by (a) this is actually an equality. This means that all computations involved
in defining Zi↾k+1 have halted by stage s, so the guess

Zi[s](k) = Zi(k)

is correct. ⊓⊔

4.3 The Betting Strategy

We are now ready to define the sequence (nk) and the total injection strat-
egy that will succeed on Z(nk). We have already defined the computable in-
jection above. Now we partition the initial capital; to every natural number
j = 〈i, 〈n0, . . . , ni−1〉, l〉 we assign a fraction 2−j−1 of our starting capital. When
we are asked to bet on k = 〈i, 〈n0, . . . , ni−1〉, l, m〉, we will only use the capital

assigned to the number 〈i, 〈n0, . . . , ni−1〉, l〉. In particular, if we are asked to bet
on this position k at stage s, then we will put 3

4 of this capital on the outcome

Z
〈n0,...,ni−1〉
i [s](k) and 1

4 of this capital on the other outcome. Once the capi-
tal assigned to some 〈i, 〈n0, . . . , ni−1〉, l〉 exceeds 1, we start betting evenly on
positions with this value of i, and we say that the substrategy for i has succeeded.

Note 2. – The substrategy for i is guaranteed to succeed when betting on

Z
〈n0,...,ni−1〉
i . Indeed, by Lemma 1, when l has the right value and m is big

enough, then at some point we will bet on position k = 〈i, 〈n0, . . . , ni−1〉, l, m〉
and this bet is guaranteed to be successful, i.e. to increase the capital as-
signed to 〈i, 〈n0, . . . , ni−1〉, l〉 with a factor 3

2 . So the capital assigned to
〈i, 〈n0, . . . , ni−1〉, l〉 will exceed 1 if we wait long enough.

– If the substrategy for i succeeds when betting on Z
〈n0,...,ni−1〉
i , and the high-

est position that the strategy has bet on before succeeding is position k,
then the substrategy will run exactly the same, and hence also succeed at
the same point, on any sequence Y with Y ↾k+1= Z↾k+1. In particular, if

k < ni < ni+1 < ni+2 < . . . ,

then the substrategy for i will run exactly the same on Z
〈n0,...,nj−1〉
j for any

j ≥ i, and also on Z(nk).

4.4 The Sequence (nk)

We now recursively define nk by letting n0 = 0 and taking

ni = 1 +





Highest position that the strategy has bet on after the
substrategies for 0, . . . , i−1 have succeeded when betting

on Z
〈n0,...,ni−1〉
i



 .

By Note 2, these substrategies indeed all succeed, so the sequence is well-defined.
Moreover, the substrategies all succeed on Z(nk), as well. So the total injection
betting strategy succeeds on Z(nk), as there are infinitely many substrategies,
that with disjoint parts of the initial capital, all generate one unit of money.
This proves the theorem:

Theorem 1. There is a PCR sequence, which is not TIR.

5 The Bigger Picture

The first real notion of algorithmic randomness was Martin-Löf randomness
(MLR), introduced by Martin-Löf in 1966 [4]. Schnorr argued that the tests used
to define nonrandom sequences in Martin-Löf randomness are too strong to be
considered effective. He proposed two important weaker notions of randomness,
now known as Schnorr randomness (SR) and computable randomness [9,10].
Computable randomness, as well as all variations introduced in section 3 of this

article, are weaker than MLR but stronger than SR. Two nontrivial implications
hold between these notions: TPR is equivalent to CR (See e.g. [3] or [7], 7.6.24)
and the partial and total versions of KLR are also equivalent ([5]; see also [2],
7.5.4 or [7], 7.6.25).

PCR and KLR are the variations of computable randomness that have been
studied best. Among the most interesting results involving these notions, are
the constructions by Nies, Stephan and Terwijn [8] of a sequence that is CR
but not PCR, and a sequence that is SR but not CR, where both sequences
can be constructed in any high Turing degree. This is the best possible, since in
all nonhigh Turing degrees Schnorr randomness implies MLR [8], collapsing all
notions of computable randomness.

The most important open problem in this area is whether MLR is strictly
stronger than KLR, or whether both notions are equivalent. Injection and per-
mutation randomness were introduced by Miller and Nies [6], in the hope that it
would be possible to construct an injection/permutation random sequence that
is not MLR, thereby providing a stepping stone towards separating KLR from
MLR. This was indeed recently achieved by Kastermans and Lempp [3], who
separated MLR from PIR. This is the closest that anyone has come to solving
the “MLR versus KLR” question so far.

The relative strength of the different notions of computable randomness was
studied in detail by Bienvenu, Hölzl, Kräling and Merkle [1]. They constructed

– a PPR sequence that is not TIR,
– a TIR sequence that is not PCR,
– a PCR sequence that is not PPR,

thereby proving that no implications hold between the different computable ran-
domness notions, other than the ones metioned before, and possibly an implica-
tion from PIR to KLR.

All of this is summarized in Figure 1.
Theorem 1 of this article is already implied by the construction in [1] of a

PPR sequence that is not TIR. My construction however, is quite different from
the construction in [1], in which Kolmogorov complexity is central. I believe that
my method is more direct and the idea might be easier to understand. On the
other hand, the many approximations up to some stage s make the verification
a little messy, and the methods used in [1] seem to be more versatile.

An interesting direction for future research, would be to investigate whether
the different constructions from [3], [1] and this article can be adapted to give
sequences in any high degree, similar to the results from [8].

References

1. Bienvenu, L., Hölzl, R., Kräling, T., Merkle, W.: Separations of non-monotonic ran-
domness notions. 6th International Conference on Computability and Complexity
in Analysis (CCA 2009) (2009)

2. Downey, R.G., Hirschfeldt, D.R.: Algorithmic Randomness and Complexity. The-
ory and Applications of Computability, Springer (2011)

MLR
Martin-Löf

random

KLR
Kolmogorov

Loveland

random

PIR
partial

injection

random

PPR
partial

permutation

random

PCR
partial

computable

random

TIR
total

injection

random

TPR
total

permutation

random
=

CR
computable

random

SR
Schnorr

random

Stronger randomness notions
Stronger tests to find regularities

Weaker randomness notions
Weaker tests to find regularities

Fig. 1. The relative strength of computable randomness and related notions. No other
implications than the ones implied by the figure hold, except for possibly “PIR ⇒

KLR” or “KLR⇒MLR”, but certainly not both.

3. Kastermans, B., Lempp, S.: Comparing notions of randomness. Theoretical Com-
puter Science 411, 602–616 (2010)

4. Martin-Löf, P.: The definition of random sequences. Information and Control 9,
602–619 (1966)

5. Merkle, W.: The Kolmogorov-Loveland stochastic sequences are not closed under
selecting subsequences. Journal of Symbolic Logic 68, 1362–1376 (2003)

6. Miller, J.S., Nies, A.: Randomness and computability: open questions. Bulletin of
Symbolic Logic 12, 390–410 (2006)

7. Nies, A.: Computability and Randomness. Oxford University Press (2009)
8. Nies, A., Stephan, F., Terwijn, S.A.: Randomness, relativization and Turing de-

grees. Journal of Symbolic Logic 70, 515–535 (2005)
9. Schnorr, C.P.: A unified approach to the definition of a random sequence. Mathe-

matical Systems Theory 5, 246–258 (1971)
10. Schnorr, C.P.: Zufälligkeit und Wahrscheinlichkeit. Eine algoritmische Begründung

der Wahrscheinlichkeitstheorie, Lecture Notes in Mathematics, vol. 218. Springer-
Verlag (1971)

